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Abstract: The remarkable agreement between observations of the primordial light ele-

ment abundances and the corresponding theoretical predictions within the standard cosmo-

logical history provides a powerful method to constrain physics beyond the standard model

of particle physics (BSM). For a given BSM model these primordial element abundances

are generally determined by (i) Big Bang Nucleosynthesis and (ii) possible subsequent dis-

integration processes. The latter potentially change the abundances due to late-time high-

energy injections which may be present in these scenarios. While there are a number of

public codes for the first part, no such code is currently available for the second. Here

we close this gap and present ACROPOLIS, A generiC fRamework fOr Photodisintegration

Of LIght elementS. The widely discussed cases of decays as well as annihilations can be

run without prior coding knowledge within example programs. Furthermore, due to its

modular structure, ACROPOLIS can easily be extended also to other scenarios.

For the most recent version of this manual, please visit the GitHub repository

at https://github.com/skumblex/acropolis.
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1 Introduction

The remarkable overall agreement between the inferred abundances of light elements and

the corresponding predictions within the standard model of particle physics (SM) implies

that any deviation from standard cosmology for sub-MeV temperatures is strongly con-

strained [1–4]. On the other hand, there is overwhelming evidence for the existence of

dark matter (DM) suggesting that physics beyond the SM (BSM) is necessary to explain

all phenomena we observe in nature. To evaluate the viability of a given BSM model it

is therefore crucial to calculate its effect on the primordial element abundances and to

compare them with the observationally inferred values.

There are two different temperature ranges in the early universe which determine the

various element abundances: Once the universe has cooled down to about 1 MeV – at

which point the typical energy of photons in the thermal bath has dropped significantly

below the relevant binding energies – protons and neutrons start to fuse into light nuclei

such as deuterium, helium, and lithium. This process of Big Bang Nucleosynthesis (BBN)

can be tracked numerically by solving the appropriate Boltzmann equations describing the

various fusion processes and a number of public codes such as AlterBBN [5], PArthENoPE [6],

and PRIMAT [7] are available for this task. For most scenarios, the fusion processes have

completed at about 10 keV and the nuclear abundances remain frozen at their asymptotic

values until other processes become effective that might further change the abundances.

For the standard cosmological history this would only happen at very late times, e.g. due

to a reprocessing of the abundances in stellar fusion reactions.

However, many BSM models predict late-time decays or residual annihilations of dark

sector particles which can lead to subsequent nuclear disintegration processes due to elec-

tromagnetic or hadronic showers, further changing the ‘would-be’ abundance values from

BBN. For rather heavy dark sectors both photodisintegration and hadrodisintegration are

relevant and the treatment of photodisintegration is simplified by the fact that the result-

ing photon spectrum has a universal form for sufficiently large injection energies depending

only on the injection time and total energy injected [8]. Recently however the idea of light

dark sectors with masses in the MeV to GeV range has attracted a lot of attention [9–22]

and the light element abundances have been studied for such setups [23–28]. What makes

the correct treatment of such scenarios more involved is that the coupled evolution equa-

tions of all particles that can emerge in electromagnetic decays have to be solved explicitly,

as the approximation of the ‘universal photon spectrum’ breaks down if the energy of the

initial decay products is too low [29]. However, unlike the case for BBN, there is cur-

rently no code available to treat possible late-time modifications of the abundances due to

photodisintegration. Here we close this gap and present ACROPOLIS, A generiC fRamework

fOr Photodisintegration Of LIght elementS. The widely discussed cases of decays as well

as annihilations are already implemented in example programs which can be run without

prior coding knowledge. Furthermore, due to its modular structure, ACROPOLIS can eas-

ily be extended also to other scenarios and could also be linked to larger computational

frameworks such as CosmoBIT [30].
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2 Theoretical background

We follow the procedure detailed in [24], which generalised the one from [29] by not only

including photons but also electrons and positrons. To render this manual self-contained we

repeat all relevant steps. Following the convention in the literature on photodisintegration,

we consider the phase-space distribution function fx of particles x ∈ {e±, γ} differential in

the energy E. Taking into account the degrees of freedom of x, gx, this is related to the

more conventional distribution fx differential in the momentum p via

fx(E) = gxfx(p)
E p

2π2
, (2.1)

where E =
√
m2
x + p2 is the energy with mass mx and p is the momentum.

2.1 Electromagnetic cascade

The late-time injection of high-energetic electromagnetic particles into the SM plasma

induces an electromagnetic cascade that leads to non-thermal parts of the photon, electron,

and positron spectra. Denoting particles from the thermal background with a subscript

‘th’ the most relevant interactions are

• Double photon pair creation γγth → e+e−,

• Photon-photon scattering γγth → γγ,

• Bethe-Heitler pair creation γN → e+e−N with N ∈ {1H, 4He},

• Compton scattering γe−th → γe−, and

• Inverse Compton scattering e±γth → e±γ.

Other processes are suppressed by small number densities and can be neglected, cf. ap-

pendix A. Before turning to the appropriate Boltzmann equation for the description of the

electromagnetic cascade, let us briefly comment on why photodisintegration is only possible

for late-time and high-energy injections into the SM plasma. For photons with energies

above the threshold for double photon pair creation Eth
e+e− ' m2

e/(22T ) [31], where me is

the electron mass and T is the photon temperature, this process is much more efficient

than the other reactions, thus rapidly depleting these high-energy photons. This implies

that any photodisintegration process can only occur if Eth
e+e− is above the threshold for the

various disintegration reactions, i.e. if T is small enough translating to

• T . 5.34 keV for D-disintegration with Eth
D ≈ 2.22 MeV,

• T . 1.90 keV for 3H-disintegration with Eth
3H ≈ 6.26 MeV,

• T . 2.16 keV for 3He-disintegration with Eth
3He ≈ 5.49 MeV,

• T . 0.60 keV for 4He-disintegration with Eth
4He ≈ 19.81 MeV,

• T . 3.21 keV for 6Li-disintegration with Eth
6Li ≈ 3.70 MeV,
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• T . 4.81 keV for 7Li-disintegration with Eth
7Li ≈ 2.47 MeV, and

• T . 7.48 keV for 7Be-disintegration with Eth
7Be ≈ 1.59 MeV.

We observe that photodisintegration will become effective for rather low temperatures

where BBN has already finished, so that the two processes simply factorise. This implies

in particular that the initial abundances for photodisintegration correspond to the final

abundances of BBN.1 Even though we do not employ it within ACROPOLIS, let us also re-

mark that for injection energies above Eth
e+e− , the non-thermal part of the photon spectrum

is close to the universal spectrum [8]

fγ,univ(E) ∼


K0(E/EX)−3/2 for E < EX ,

K0(E/EX)−2 for EX < E < Eth
e+e− ,

0 for E > Eth
e+e− ,

(2.2)

where K0 = E0E
−2
X [2+ ln(Eth

e+e−/EX)]−1 and EX = m2
e/(80T ). In ACROPOLIS we solve the

full Boltzmann equation numerically in which case the cutoff at Eth
e+e− is replaced by an

exponential suppression reflecting the aforementioned suppression of photodisintegration

reactions due to efficient double photon pair creation.

As the total interaction rates Γx are large compared to the Hubble rate H, the ex-

pansion of the universe can be neglected in the calculation of the non-thermal photon

spectrum [8, 32]. Suppressing the t- and T (t)-dependencies, the Boltzmann equation reads

∂fx(E)

∂t
' Sx(E)− Γx(E)fx(E) +

∑
x′

∫ ∞
E

dE′Kx′→x(E,E′)fx′(E
′) , (2.3)

where Sx(E) is the source term for the production of x with energy E, Γx(E) is the

total interaction rate for x with energy E, and Kx′→x(E,E′) is the differential interaction

rate going from particle x′ with energy E′ to particle x with energy E. These rates

contain the electromagnetic cascade reactions listed above and are given in appendix A.

The electromagnetic cascade reactions quickly establish a quasi-static equilibrium with

∂fx/∂t ' 0 [8, 32], hence we search for solutions of the integral equation

fx(E) =
1

Γx(E)

(
Sx(E) +

∑
x′

∫ ∞
E

Kx′→x(E,E′)fx′(E
′) dE′

)
. (2.4)

We consider source terms arising from monochromatic or continuous high-energy in-

jections, with the former one being typically realised for decays or residual annihilations

of non-relativistic particles into two-particle SM final states. Hence, we parameterise the

source terms via

Sx(E) = S(0)
x δ(E − E0) + S(c)

x (E) , (2.5)

1This factorisation specifically implies that ACROPOLIS can be used independently of the actual BBN

code and therefore can easily be incorporated as a post-processing step into most existing tool chains.
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where E0 is the injection energy and S
(0)
x (S

(c)
x (E)) encodes the discrete (continuous) part

of the injection spectrum.

For the numerical solution of eq. (2.4) we subtract the term containing the δ-distribution

by defining

Fx(E) := fx(E)− S
(0)
x δ(E − E0)

Γx(E)
(2.6)

such that

Γx(E)Fx(E) = S(c)
x (E) +

∑
x′

[
Kx′→x(E,E0)S

(0)
x′

Γx′(E0)
+

∫ ∞
E

Kx′→x(E,E′)Fx′(E
′) dE′

]
.

(2.7)

2.2 Non-thermal nucleosynthesis

With the previously calculated photon spectra fγ we can now evaluate the effect on the

primordial light element abundances N ∈ {n, p,D, 3H, 3He, 4He, 6Li, 7Li, 7Be}. The corre-

sponding Boltzmann equation is given by

ẎN (t) =
∑
j

Yj(t)

[
1

τj→N
+

∫ ∞
0

dE fγ(t, E)σjγ→N (E)

]

− YN (t)
∑
j′

[
1

τN→j′
+

∫ ∞
0

dE fγ(t, E)σNγ→j′(E)

]
, (2.8)

where YN = nN/nb with nN (nb) the number density of N (baryons), σr the cross section

of the reaction r, and τd the lifetime of the decay d. Here we implement all reactions shown

in table 1. Regarding the cross-sections for the various photodisintegration reactions we

adopt the analytical expressions for the rates 1 − 17 from [8]; however, we modify the

prefactor of reaction 7 from 17.1 mb to 20.7 mb as suggested by [32] in order to match the

most recent EXFOR data. Note that these disintegration reactions can be neglected in

eq. (2.3) due to the low number density of nuclei, thus enabling us to calculate the photon

spectrum without knowledge of the light element abundances. Finally, let us note that

there exists an additional decay channel of beryllium-7, i.e. 7Be + e− → 7Li + νe. However,

this decay does not become relevant until shortly before recombination, which is why it can

be neglected in eq. (2.8). To incorporate this decay, it is thus sufficient to simply transfer

the full beryllium-7 abundance to lithium-7 after the calculation.

3 Numerical solution techniques

3.1 Electromagnetic cascade

For the numerical solution of eq. (2.7) we can exploit the fact that only particles with

energies less than the injection energy can be produced, leading to vanishing spectra for

E > E0. Moreover, we are only interested in energies above a minimal energy Emin given by

the lowest threshold energy of the photodisintegration reactions. In the code we therefore
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No. Eth [MeV]

1 D + γ → p + n 2.22

2 3H + γ → D + n 6.26

3 3H + γ → p + n + n 8.48

4 3He + γ → D + p 5.49

5 3He + γ → n + p + p 7.12

6 4He + γ → 3H + p 19.81

7 4He + γ → 3He + n 20.58

8 4He + γ → D + D 23.84

9 4He + γ → D + n + p 26.07

10 6Li + γ → 4He + n + p 3.70

11 6Li + γ → X + 3A 15.79

12 7Li + γ → 3H + 4He 2.47

13 7Li + γ → n + 6Li 7.25

14 7Li + γ → 2n + p + 4He 10.95

15 7Be + γ → 3He + 4He 1.59

16 7Be + γ → p + 6Li 5.61

17 7Be + γ → 2p + n + 4He 9.30

τ [s]

18 n → p + e− + ν̄e 8.802× 102

19 3H → 3He + e− + ν̄e 5.605× 108

Table 1. Reactions and their corresponding threshold energies from [8] or lifetimes for the processes

we consider in eq. (2.8).

set Emin = 1.5 MeV (Eth
7Be ≈ 1.59 MeV). With the relevant energy range [Emin, E0] we then

define a grid of energies spaced evenly on a log-scale, εi := Emin× (E0/Emin)i/(M−1), where

i ∈ {0, . . . ,M − 1}, (ε0, εM−1) = (Emin, E0). By default we choose 150 points per decade,

which is usually sufficient to ensure convergence for all parameter points. Evaluating

eq. (2.7) at each individual grid point we then find [33]

Γx(εi)Fx(εi) = S(c)
x (εi) +

∑
x′

[
Kx′→x(εi, E0)S

(0)
x′

Γx′(E0)
+

∫ ln(E0)

ln(εi)
dy eyKx′→x(εi, e

y)Fx′(e
y)

]

' S(c)
x (εi) +

∑
x′

[
Kx′→X(εi, E0)S

(0)
x′

ΓX′(E0)
+

∆y

2

(
2

M−2∑
j=i+1

εjKx′→x(εi, εj)Fx′(εj)

+ εiKx′→x(εi, εi)Fx′(εi) + E0Kx′→x(εi, E0)Fx′(E0)

)]
,

(3.1)

with ∆y = ln(E0/Emin)/(M−1). In the last step, we have used the trapezoidal integration

rule and the sum
∑M−2

j=i+1 is understood to vanish for i + 1 > M − 2. This expression is
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valid for i < M − 1, while for i = M − 1 we simply have

Fx(E0) =
S

(c)
x (E0)

Γx(E0)
+
∑
x′

Kx′→x(E0, E0)S
(0)
x′

Γx(E0)Γx′(E0)
. (3.2)

Assuming that Fx(Ej) has already been calculated for j > i, eq. (3.1) can be interpreted

as a linear system of three equations for the unknown variables Fx(Ei). Consequently, by

defining F̄(εi) :=
[
Fγ(εi),Fe−(εi),Fe+(εi)

]T
, we have

F̄(εi) = a(εi) +B(εi)F̄(εi) (3.3)

with [
a(εi)

]
x

:=
1

Γx(εi)

∑
x′

[
Kx′→x(εi, E0)S

(0)
x′

Γx′(E0)
+

∆y

2

(
2
M−2∑
j=i+1

εjKx′→x(εi, εj)Fx′(εj)

+ E0Kx′→x(εi, E0)Fx′(E0)

)]
+
S

(c)
x (εi)

Γx(εi)
, (3.4)

[
B(εi)

]
xx′

:=
∆y

2

εiKx′→x(εi, εi)

Γx(εi)
. (3.5)

Given the knowledge of
[
a(εi)

]
x

and
[
B(εi)

]
xx′

, the linear eq. (3.3) can then be solved using

standard techniques to calculate the values of F̄(εi). As
[
a(εi)

]
x

and
[
B(εi)

]
xx′

explicitly

depend on F̄(εj) for j > i, we start solving eq. (3.2) at i = M −1 to successively determine

solutions of eq. (3.3) at i < M − 1.

3.2 Non-thermal nucleosynthesis

For the numerical solution of eq. (2.8), we first bring it into the form

ẎN (t) =
∑
j

Yj(t)
[
Γjγ→N (t) + Γj→N

]
− YN (t)

∑
j′

[
ΓNγ→j′(t) + ΓN→j′

]
(3.6)

by defining the reaction rates

ΓNγ→N ′(t) :=

∫ ∞
0

fγ(t, E)σNγ→N ′(E) dE , (3.7)

ΓN→N ′ :=
1

τN→N ′
(3.8)

for photodisintegration reactions and decays, respectively. Consequently, by also defining

Ȳ (t) :=
[
Yn(t), Yp(t), YD(t), ...

]T
and after substituting t → T by means of the time-

temperature relation, we find

dȲ (T )

dT
=
[
Rpdi(T ) +Rdecay(T )

]
Ȳ (T ) (3.9)

with

[
Rpdi/decay(T )

]
NN ′

:=
dt

dT
×

ΓN ′γ/N ′→N (T )− δNN ′
∑
j′

ΓNγ/N→j′(T )

 . (3.10)
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Here, the matrices
[
Rpdi(T )

]
NN ′

and
[
Rdecay(T )

]
NN ′

can be obtained via numerical in-

tegration, and eq. (3.9) is an ordinary system of differential equations, which is solved

by

Ȳ (T ) = exp

(∫ T

Tmax

R(T ′) dT ′
)
Ȳ0 (3.11)

with R(T ′) := Rpdi(T
′) + Rdecay(T ′) and the initial condition Ȳ (Tmax) := Ȳ0 at some

maximal (initial) temperature Tmax. The matrix exponential exp(·) can be evaluated nu-

merically by (i) diagonalising the matrix
∫ T
T0
R(T ′)dT ′ with the corresponding unitary

transformation UR(T ), (ii) taking the exponential of the diagonal matrix by exponenti-

ating each eigenvalue individually, and (iii) transforming the resulting matrix back using

U−1
R (T ).

4 Example models

In this section, we briefly describe the physics of the two example models which are im-

plemented in ACROPOLIS. In the next section, we will then discuss how to utilise the corre-

sponding python scripts decay and annihilation.

4.1 Decay of a decoupled MeV-scale BSM particle

As a first example model implemented in ACROPOLIS, we consider the non-relativistic decay

of a decoupled MeV-scale BSM particle φ with mass mφ and lifetime τφ, e.g. an MeV-scale

mediator. This implementation closely follows [24, 34], but only considers a number density

of φ fixed at a reference temperature T0 that simply redshifts, i.e. remains comovingly

constant, until it decays with a lifetime τφ. As pointed out in [34] this is in fact a consistent

assumption for the parameter ranges where photodisintegration may be relevant, even when

taking into account inverse decays of φ.

The source terms entering in eq. (2.5) for the non-relativistic decay of a decoupled

BSM particle φ with mass mφ and lifetime τφ are given by [24, 25, 35, 36]

E0 =
mφ

2
, (4.1)

S(0)
γ = BRγγ ×

2nφ
τφ

, (4.2)

S
(0)
e− = S

(0)
e+

= BRe+e− ×
nφ
τφ

, (4.3)

S(c)
γ (E) =

S
(0)
e±

E0
× α

π

1 + (1− x)2

x
ln

(
4E2

0(1− x)

m2
e

)
×Θ

(
1− m2

e

4E2
0

− x
)
, (4.4)

S
(c)
e− (E) = S

(c)
e+

(E) = 0 , (4.5)

where nφ is the number density of φ, BRγγ (BRe+e−) is the branching ratio for decays into

two photons (electron-positron pairs), α is the fine-structure constant, me is the electron

mass, and x = E/E0. Here, the continuous part S
(c)
γ (E) of the photon source term is solely

due to final-state radiation of photons from injected electron-positron pairs. If there is no
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contribution from inverse decays to the abundance of φ below a reference temperature T0,

i.e. for T0 � mφ, with corresponding time t0, its number density can be parametrised as

(t ≥ t0)

nφ(t) ' nφ(T0)×
(
R(t0)

R(t)

)3

exp

(
− t

τφ

)
, (4.6)

where R is the scale factor.

Whenever relevant, photodisintegration provides a very powerful probe of decaying

MeV-scale BSM particles, constraining even very small abundances. We can thus assume

that the energy density in the universe is dominated by the SM (and at late times also DM)

energy densities, i.e. mφnφ � ρSM+ρDM, and that the time-temperature relation of the SM

is not changed by any BSM processes for t > t0. This enables us to provide tables for the SM

(photon) temperature, its derivative w.r.t. time, the neutrino temperature, the Hubble rate,

and the scale factor. Further approximating that standard BBN is not changed by any BSM

processes including the presence and decay of φ implies that no separate BBN calculation

must be performed and the results of a calculation using AlterBBN v1.4 [5, 37] are provided.

The photodisintegration calculation is performed for temperatures Tmax ≥ T ≥ Tmin with

Tmax = T (t = τφ)× 101/2 , (4.7)

Tmin = T (t = τφ)× 10−3/2 (4.8)

around the decay time giving results of very good accuracy.

With the python script decay we thus provide an example program to calculate the

primordial light element abundances after photodisintegration due to the decay of a BSM

particle φ with mass mφ, lifetime τφ, a reference temperature T0 with corresponding number

density nφ(T0), and branching ratio BRe+e− (BRγγ) for decays in electron-positron pairs

(two photons).

4.2 Residual annihilations of MeV-scale dark matter

For the second example model implemented in ACROPOLIS, we consider residual annihila-

tions of DM (or more generally any annihilating BSM particle) following [26]. We assume

that DM consists of a self-conjugate2 fermion χ with mass mχ and a density parameter

ΩDMh
2. By default, the latter quantity is fixed to ΩDMh

2 = 0.12 [39], but different values

can also be specified by means of an optional command-line argument (cf. sec. 5.2.1). The

2While only the case for self-conjugate DM is directly implemented in ACROPOLIS, the case of non self-

conjugate DM differs only by a factor of 2 in 〈σv〉. This factor is exact, unlike for freeze-out calculations [38].
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source terms entering in eq. (2.5) are then given by [26]

E0 = mχ , (4.9)

S(0)
γ = BRγγ × 〈σv〉n2

χ , (4.10)

S
(0)
e− = S

(0)
e+

= BRe+e− ×
1

2
〈σv〉n2

χ , (4.11)

S(c)
γ (E) =

S
(0)
e±

E0
× α

π

1 + (1− x)2

x
ln

(
4E2

0(1− x)

m2
e

)
×Θ

(
1− m2

e

4E2
0

− x
)
, (4.12)

S
(c)
e− (E) = S

(c)
e+

(E) = 0 , (4.13)

where BRγγ (BRe+e−) is the branching ratio for annihilations into two photons (electron-

positron pairs), α is the fine-structure constant, me is the electron mass, x = E/E0. Here,

the continuous part S
(c)
γ (E) of the photon source term is again solely due to final-state

radiation of photons from injected electron-positron pairs. For the calculation, we expand

the thermally averaged annihilation cross section3 in powers of the relative velocity vrel

〈σv〉 ' a+ b〈v2
rel〉 . (4.14)

Here, s-wave DM annihilations are dominated by a whereas p-wave DM annihilations are

dominated by b. The thermally averaged relative velocity squared is given by

〈v2
rel〉 '

6Tχ(T )

mχ
, (4.15)

where Tχ is the DM temperature evolving before and after kinetic decoupling from the

photon heat bath at T kd according to

Tχ(T ) =

{
T if T ≥ T kd ,

T kd(R(T kd)/R(T ))2 if T < T kd .
(4.16)

Similar to section 4.1 we assume that the energy density in the universe is dominated by

the SM and DM χ, and that the time-temperature relation of the SM is not influenced by

the presence of χ or any other BSM particle for the temperatures relevant for photodis-

integration. Also assuming standard BBN without any alterations due to BSM processes

enables us to use the same data as before for the light element abundances as well as

all temperatures, the Hubble rate, and the scale factor. The calculation is performed for

temperatures Tmax ≥ T ≥ Tmin with

Tmax = 2× m2
e

22Emin
, (4.17)

Tmin = Tmax × 10−4 , (4.18)

where Emin = 1.5 MeV is just below the lowest disintegration threshold (Eth
7Be ≈ 1.59 MeV).

This range gives results of very good accuracy, as for larger temperatures the non-thermal

3This is the sum of the one for annihilations in two photons and in electron-positron pairs, weighted

according to their branching ratios.
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photon spectrum is exponentially suppressed for energies above any disintegration thresh-

old, while for smaller temperatures the annihilation rate is suppressed at least ∝ T−6.

To summarise, we provide the example program annihilation to calculate the primor-

dial light element abundances after photodisintegration due to residual annihilations of DM

particles χ with mass mχ, s (p)-wave part a (b) of the thermally averaged annihilation cross

section, kinetic decoupling temperature T kd, and branching ratio into electron-positron

pairs BRe+e− (two photons BRγγ).

5 Running ACROPOLIS

5.1 Installation

ACROPOLIS is open-source software, licensed under GPL3. The source code is publicly

available and can be cloned from GitHub by executing the command4

$ git clone https://github.com/skumblex/acropolis.git

which creates a new folder named acropolis with the repository inside of your current

working directory. ACROPOLIS has been tested with Python version ≥ 3.7 on macOS 10.15

and Ubuntu 20.04, and the following packages must be available (older versions might also

work but have not been thoroughly tested):

• NumPy ≥ 1.19.1 (matrix manipulation)

• SciPy ≥ 1.5.2 (numerical integration)

• Numba ≥ 0.51.2 (just-in-time compilation)

The most recent versions of these dependencies can be collectively installed at user-level,

i.e. without the need for root access, by executing the command

$ python3 -m pip install numpy, scipy, numba --user

If these dependencies conflict with those for other programs in your work environment, it

is strongly advised to utilise the capabilities of Python’s virtual environments.

Inside of the git repository there also exists an optional database file at the location

acropolis/data/rates.db.gz, which contains pre-calculated values for some of the com-

putationally expensive reaction rates. By default, ACROPOLIS uses this file to speed up the

calculation by ∼ O(10%)5. However, if this behaviour is not desired for some reason, e.g.

when running on a batch system, ACROPOLIS also allows to disable the usage of this file

(cf. sec. 6.3).

4Alternatively, the code is also available on HEPForge at https://acropolis.hepforge.org/.
5Several benchmark points that show the runtime of the code with and without the additional database

files, can be found in appendix B.

– 11 –

https://numpy.org/
https://www.scipy.org/
https://numba.pydata.org/
https://acropolis.hepforge.org/


5.2 Using the predefined models

ACROPOLIS is designed to allow for an easy implementation of arbitrary models, but also

contains reference implementations for the example models that were introduced in sec-

tion 4. In fact, these two models and the corresponding scripts that are bundled with

ACROPOLIS should already suffice to treat most conceivable scenarios, implying that – for

most applications – no additional coding is required. In the present section we will there-

fore first discuss how to correctly utilise these reference models, and only afterwards discuss

how to implement additional ones in section 6.

5.2.1 Running the wrapper scripts

Within the ACROPOLIS main directory there are two executables, decay and annihilation,

which wrap the scenarios discussed in section 4.1 and section 4.2, respectively. Both of

these files need to be called with six mandatory command-line arguments (and an optional

seventh argument for ΩDMh
2 when calling annihilation), a list of which can be obtained

by running the command of choice without any arguments at all. Using the notation from

section 4, the requested parameters are

• decay: mφ [MeV] τφ [s] T0 [MeV] nφ/nγ |T0 BRee BRγγ

• annihilation: mχ [MeV] a [cm3/s] b [cm3/s] Tkd [MeV] BRee BRγγ ΩDMh
2

For example, the command

$ ./decay 10 1e5 10 1e-10 0 1

calculates the abundances after photodisintegration in the presence of an unstable particle

φ with mass mφ = 10 MeV, lifetime τφ = 105 s, and number density nφ/nγ |T0 = 10−10 at

T0 = 10 MeV decaying exclusively into two photons (so BRee = 0 and BRγγ = 1).

Running the executables, information regarding the current state of the calculation is

provided and the final output is given by a 9x3 matrix comprising the final abundances

after photodisintegration for the given parameter point. For our example above the corre-

sponding output roughly looks as follows:

INFO : Extract ing and read ing database f i l e s .

INFO : Fin i shed a f t e r 25 .5ms .

INFO : Ca l cu l a t ing non−thermal spec t ra and r e a c t i o n r a t e s .

INFO : Fin i shed a f t e r 21 .9 s .

INFO : Running non−thermal n u c l e o s y n t h e s i s .

INFO : Fin i shed a f t e r 392 .6ms .

| mean | high | low

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n | 0.00000 e+00 | 0.00000 e+00 | 0.00000 e+00 [ decayed ]

p | 7.52508 e−01 | 7.52573 e−01 | 7.52443 e−01

H2 | 1.83746 e−05 | 1.79179 e−05 | 1.88350 e−05

H3 | 0.00000 e+00 | 0.00000 e+00 | 0.00000 e+00 [ decayed ]
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He3 | 7.75538 e−06 | 7.83537 e−06 | 7.68603 e−06

He4 | 6.18580 e−02 | 6.18418 e−02 | 6.18742 e−02

Li6 | 8.10470 e−15 | 2.62698 e−14 | 1.26003 e−15

Li7 | 4.08692 e−10 | 4.37536 e−10 | 3.82591 e−10

Be7 | 0.00000 e+00 | 0.00000 e+00 | 0.00000 e+00 [ decayed ]

The different columns in the matrix contain the abundances YN = nN/nb for the nine nuclei

N ∈ {n, p, 2H, 3H, 3He, 4He, 6Li, 7Li, 7Be} as indicated. In each column slightly different

initial conditions are set, corresponding to the SM results that are obtained by running the

public code AlterBBN [5, 37] with the mean (first column), high (second column), and low

(third column) values of the implemented nuclear reaction rates.6 The variation between

the values of different columns can therefore be used to approximate the theoretical errors

for different abundances. Finally, those nuclei that have already decayed are labeled with

[decayed].

5.2.2 A first look at the source code

While the output of the wrapper scripts is sufficient to check whether a certain parameter

point is excluded or not, it is sometimes important to not only print but also to further

process the final abundances. This step, however, requires some knowledge regarding the

internal workings of ACROPOLIS, which can be obtained by taking a closer look at the actual

source code. Using the file decay as an example, much of the important information is

comprised in the following two lines of code:

#! / usr / bin /env python3

[ . . . ]

from a c r o p o l i s . models import DecayModel

[ . . . ]

Yf = DecayModel (∗ params ) . r u n d i s i n t e g r a t i o n ( )

[ . . . ]

In this code snippet, the relevant model is first loaded from the module acropolis.models,

which includes implementations for both example models. More precisely, the scenar-

ios from section 4.1 (decay) and section 4.2 (annihilation) are implemented in the

classes acropolis.models.DecayModel and acropolis.models.AnnihilationModel, re-

spectively. After loading the model, a new instance of the respective class is initialised with

the appropriate input parameters – which here are obtained by parsing the command-line

arguments –, and the calculation is initiated by calling the method run disintegration().

The latter function returns a numpy.ndarray of dimension 9×n containing the final abun-

dances, with n being the number of different sets of initial conditions, i.e. n = 3 by default.

6This can easily be changed, meaning that it is possible to use arbitrary sets of initial abundances for

the calculation. We will discuss this later in section 6.2.
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Finally, the resulting array Yf can either be pretty-printed (like in the wrapper scripts)

or it can be used as an input for further calculations. In fact, these two lines of code are

everything it takes to calculate the abundances after photodisintegration for a given model,

regardless of whether the model ships with ACROPOLIS or was implemented by the user.

5.2.3 Running parameter scans

ACROPOLIS provides two classes for parameter scans, acropolis.scans.BufferedScanner

and acropolis.scans.ScanParameter. In order to understand how these two classes work

we show the following code snippet, which performs a parameter scan for the model from

sec 4.1 with mφ = 50 MeV, T0 = 10 MeV, BRee = 0, and BRγγ = 1 in the τφ − nφ/nγ |T0
parameter plane.

#! / usr / bin /env python3

[ . . . ]

from a c r o p o l i s . models import DecayModel

from a c r o p o l i s . scans import ScanParameter , Buf feredScanner

[ . . . ]

r e s = Buf feredScanner ( DecayModel ,

mphi = 5 0 . ,

tau = ScanParameter (3 , 10 , 200) ,

temp0 = 1 0 . ,

n0a = ScanParameter (−14 , −3, 200 , f a s t=True ) ,

bree = 0 . ,

braa = 1 .

) . per form scan ( )

[ . . . ]

Here, the previously mentioned classes are first loaded from the module acropolis.scans

together with the model that is used for the scan, in this case DecayModel. Then a new

instance of BufferedScanner is initiated, which takes as a first argument the model that

is used for the calculation and afterwards a set of keyword arguments with names that

are identical to the ones in the constructor of the model. These keyword arguments can

either be a float or an instance of ScanParameter. While the float parameters are kept

constant, instances of ScanParameter are scanned over. The range for the scan is defined by

the arguments of ScanParameter(ivalue, fvalue, num, spacing) and is constructed

internally using NumPy functions by either calling np.logspace(ivalue, fvalue, num)

for spacing="log" (default) or np.linspace(ivalue, fvalue, num) for spacing="lin".

Hence, the above code performs a scan over τφ ∈ [103 s, 1010 s] and nφ/nγ |T0 ∈ [10−14, 10−3]

with 200 data points in each direction, distributed equidistantly on a log-scale. There is

one additional argument that can be passed to ScanParameter, fast, which can either be

True or False. To understand the importance of this parameter, let us note that according
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to eq. (2.7), the spectra κFx(E) with some constant κ are a solution of the cascade equation

with source terms κSx(E) if the spectra Fx(E) are valid solutions of the cascade equation

with source terms Sx(E). In these two cases, the corresponding matrices in eq. (3.10) are

then κRpdi(T ) and Rpdi(T ), respectively, while Rdecay(T ) remains unaltered. Hence, for

each parameter that simply scales the source terms, it is not necesary to recalculate the

non-thermal spectra and nuclear rates for each parameter point. Instead, we can simply

rescale previously obtained solutions. The argument fast is used to determine whether

this procedure is used or not. In the example above with fast=True for n0a this means

that for a given value of τφ, Rpdi(T ) is calculated only once for nφ/nγ |T0 = 10−14 and

then simply rescaled for other values of nφ/nγ |T0 . This way, the initial calculation for

each tau takes ∼ O(1 min), while the calculation of different points for n0a then merely

takes ∼ O(1µs). The following tables show which parameters can be used with fast=True

without spoiling the calculation (i.e. those parameters that only enter the source terms as

a prefactor and do not appear elsewhere in the calculation):

DecayModel

Parameter fast=True

mphi No

tau No

temp0 No

n0a Yes

bree No

braa No

AnnihilationModel

Parameter fast=True

mchi No

a Yes (if b=0)

b Yes (if a=0)

tempkd No

bree No

braa No

Finally, once the instance of BufferedScanner is created, the scan is initiated via a

call to the method perform scan(). This function performs the scan on several cores,

the number of which can be specified via the optional argument cores. If the latter is not

specified (set to -1), only one (all available) cores are used. The given function then returns

the array res, which contains one line for each parameter combination that was used in the

scan. Each line is hence composed of the current parameter combination (two columns)

and the corresponding final abundances (nine columns for each set of initial conditions).

To illustrate the performance of this framework, we performed several scans in both

models, the results of which are shown in figures 1 and 2. In addition to the overall 95%

C.L. limit (black) we also indicate the parts of parameter space that are excluded due to an

underproduction of helium-4 (blue), over- or underproduction of deuterium (orange/grey),

and overproduction of helium-3 relative to deuterium (green).7

In figure 1 (left) we show the constraints for fixedmφ = 50 MeV in the τφ−(nφ/nγ)|T=T0

plane with T0 = 10 MeV and decays into two photons. The limits start around τφ ∼ 104 s,

quickly become very stringent with increasing lifetime, and eventually flatten out excluding

7Here we adopt the latest recommendations for the observed abundances of Yp = (2.45 ± 0.03) × 10−1

and D/1H = (2.547 ± 0.035) × 10−5 from [40], where we took into account the uncertainty due to the

baryon-to-photon ratio from Planck for D/1H, cf. [27, 39], as well as 3He/D = (8.3 ± 1.5) × 10−1 as an

upper limit from [41]. The nuclear rate uncertainties are taken into account as detailed in [24].
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Figure 1. 95% C.L. constraints for decay of a decoupled MeV-scale BSM particle (implemented

in DecayModel) into two photons (BRγγ = 1 − BRe+e− = 1) in τφ − (nφ/nγ)|T=T0
plane (left)

and mφ − (nφ/nγ)|T=T0 plane (right) with T0 = 10 MeV and mφ = 50 MeV (left) as well as τφ =

107 s (right). The limits from individual observables are shown separately: primordial deuterium

abundance (orange high, grey low), helium-4 mass fraction Yp (blue), and helium-3 abundance

normalised by deuterium (green). The overall 95% C.L. BBN limit is given by the black full line as

an envelope of individual 95% C.L. constraints neglecting correlations. Using (nφ/nγ)|T=T0 , i.e. n0a,

as a fast parameter on a single computing node with two AMD EPYC 7402 24-Core Processors

the scans took ∼ 20 min (left) and ∼ 30 min (right) for a 200× 200 grid.

a number density far below the photon number density at T0 = 10 MeV. Note that due

to this high sensitivity we are able to assume a standard cosmological history apart from

photodisintegration as detailed in section 4.1. In the right panel of figure 1 we show the

constraints for fixed τφ = 107 s (right) in the mφ − (nφ/nγ)|T=T0 plane with T0 = 10 MeV

and decays into two photons. The limits start at twice the disintegration threshold for

deuterium, mφ = 2Eth
D ≈ 4.4 MeV. Apart from some regions with more complex structure

due to different disintegration reactions the limits become increasingly strong with larger

mφ as the energy density injected into the SM becomes larger. For masses above the

pion threshold in particular, mφ & 280 MeV, hadrodisintegration may become relevant if φ

has non-vanishing couplings to quarks, implying that BRγγ + BRe+e− < 1 in general. Also

muons are kinematically available in the mass region (which are currently not implemented

in ACROPOLIS).

The scans for figure 1 took ∼ 20 min (left) and ∼ 30 min (right) for a 200 × 200

grid on two AMD EPYC 7402 24-Core Processors, clearly highlighting the performance

improvement due to the fast parameter (nφ/nγ)|T=T0 , i.e. n0a, making the number of

points in this direction computationally inexpensive (cf. also appendix B). The runtime is

thus determined mostly by the number of points in the direction of τφ or mφ (not fast).

In figure 2 we show the constraints for residual annihilations of DM into electron-

positron pairs (BRγγ = 1 − BRe+e− = 0) for purely s-wave annihilations (left, b =
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Figure 2. 95% C.L. constraints for residual annihilations of DM (implemented in

AnnihilationModel) into electron-positron pairs (BRγγ = 1 − BRe+e− = 0) for purely s-wave

annihilations (left, b = 0) and purely p-wave annihilations (right, a = 0, Tkd = 1 MeV). For the

explanation of the colour-coding see figure 1. Using (nφ/nγ)|T=T0 , i.e. n0a, as a fast parameter on

a single computing node with two AMD EPYC 7402 24-Core Processors the scans took ∼ 80 min

each for a 200× 200 grid.

0) and purely p-wave annihilations (right, a = 0, Tkd = 1 MeV) as implemented in

AnnihilationModel. These limits start at the disintegration threshold of deuterium,

mχ = Eth
D ≈ 2.2 MeV, and closely resemble those presented in [26], albeit with updated

observationally inferred primordial abundances. We therefore refer to [26] for a detailed

discussion. The scans took ∼ 80 min each for a 200 × 200 grid on the aforementioned

computing node.

6 Implementing your own models

6.1 The model framework acropolis.models

While the provided example models should suffice to tackle most problems of interest, it

may sometimes still happen that a scenario cannot directly be mapped to the standard

implementation in ACROPOLIS. For such cases, ACROPOLIS provides further tools that allow

for an easy implementation of additional models. The most important class in this context

is acropolis.models.AbstractModel, which is an abstract base class containing most of

the low-level implementation needed to run its method run disintegration(). In fact,

using this class as a base, any new model can be implemented in only two steps:

(i) create a new class, say NewModel, that uses AbstractModel as a base class, and

(ii) implement all abstract methods that are provided by AbstractModel, i.e.8

8The functions AbstractModel. source positron 0/c also exist, though they are not abstract and,
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• AbstractModel. temperature range

• AbstractModel. source photon 0

• AbstractModel. source electron 0

• AbstractModel. source photon c

Consequently, each new model class must therefore feature the scaffold (compare this e.g.

to the implementations of DecayModel and AnnihilationModel)

from a c r o p o l i s . models import AbstractModel

c l a s s NewModel ( AbstractModel ) :

de f t emperature range ( s e l f ) :

[ . . . ]

de f source photon 0 ( s e l f , T) :

[ . . . ]

de f s o u r c e e l e c t r o n 0 ( s e l f , T) :

[ . . . ]

de f s ou r c e photon c ( s e l f , E, T) :

[ . . . ]

In the following sections, we will further discuss how to implement these four abstract

methods. Apart from these methods, the constructor of AbstractModel, which is to be

called in the constructor of NewModel, also needs the injection energy E0 for the monochro-

matic part of the source term (cf. eq. (2.5)) and an instance of the class InputInterface

containing the necessary input data. This will be detailed in section 6.1.3.

6.1.1 The functions for the source terms

The functions source photon 0 and source electron 0 are associated with the respec-

tive source terms S
(0)
γ (T ) and S

(0)
e− (T ) that enter in eq. (2.5). Both of these functions take

as their only argument the temperature T [in MeV] and are expected to return the cor-

responding source term [in 1/MeV2]. As an example, let us take a look at DecayModel,

which implements the source terms in eqs. (4.2) and (4.3) via

de f source photon 0 ( s e l f , T) :

r e turn s e l f . sBRaa ∗ 2 . ∗ s e l f . number dens ity (T) ∗ hbar/ s e l f . sTau

de f s o u r c e e l e c t r o n 0 ( s e l f , T) :

r e turn s e l f . sBRee ∗ s e l f . number dens ity (T) ∗ hbar/ s e l f . sTau

by default, simply return the output of AbstractModel. source electron 0/c, which is justified for

most scenarios. However, if your specific scenario predicts different source terms for electrons and

positrons, it is always possible to simply overwrite the former function. To reduce overhead, the method

AbstractModel. source electron c is also not abstract and returns 0 by default.
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Here, self. sBRee and self. sTau are two of the input parameters of the model – which

are set in the constructor (cf. section 6.1.3) – and hbar is a constant that has been im-

ported from acropolis.params. We will take a closer look at the available parameters

in section 6.3. Finally, the function self. number density(T) implements nφ(T ) from

eq. (4.6) and is exclusive to DecayModel.9

Similarly, the function source photon c is associated with the continuous source term

S
(c)
γ (E, T ) entering eq. (2.5). This function takes two arguments, the energy E and the

temperature T [both in MeV], and is expected to return the corresponding source term [in

1/MeV3]. As an example, we show the corresponding implementation in DecayModel of

the source term from eq. (4.4), which encodes final-state radiation of photons:

de f s ou r c e photon c ( s e l f , E, T) :

EX = s e l f . sE0

x = E/EX

y = me2 / ( 4 .∗EX∗∗2 . )

i f 1 . − y < x :

re turn 0 .

sp = s e l f . s o u r c e e l e c t r o n (T)

return ( sp /EX) ∗ ( alpha / p i ) ∗ (1.+(1.−x )∗∗2 . ) / x ∗ l og ((1.−x )/ y )

Here, self. sE0 is the injection energy – which is set in the constructor – and me2, alpha,

and pi are constants that have been imported from acropolis.params.

6.1.2 The function for the temperature range

Additionally to the source terms from the previous section, the only other function that

needs to be implemented is temperature range, which is expected to return a two-

dimensional list with the minimal and the maximal temperature spanning the range needed

in eq. (3.9). Here, it is important to ensure that this range covers all temperatures for which

photodisintegration is actually relevant. Coming back to DecayModel as an example, pho-

todisintegration happens around the lifetime of the particle at t ∼ τφ, and a suitable tem-

perature range is [10−3/2T (τφ), 101/2T (τφ)], since the bulk of photodisintegration reactions

happens only for t > τφ. The actual implementation in DecayModel is given by

de f temperature range ( s e l f ) :

# The number o f degrees−of−freedom to span

mag = 2 .

# Calcu la te the approximate decay temperature

Td = s e l f . s I I . temperature ( s e l f . sTau )

# Calcu la te Tmin and Tmax from Td

Td ofm = log10 (Td)

# Here we choose −1.5 (+0.5) o rde r s o f magnitude

9While it is only necessary to implement the four abstract methods of AbstractModel, it is of course

also possible to provide other (private) methods that are needed within the new model.
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# below ( above ) the approx . decay temperature ,

# s i n c e the main part happens a f t e r t = \ tau

Tmin = 10 .∗∗ ( Td ofm − 3 .∗mag / 4 . )

Tmax = 10 .∗∗ ( Td ofm + 1.∗mag / 4 . )

re turn (Tmin , Tmax)

Apart from the previously discussed model parameter self. sTau, this implementation

only involves the variable self. sII, which is set in the constructor (cf. section 6.1.3) and

constitutes an instance of the class acropolis.input.InputInterface. This class is the

second most important class next to acropolis.models.AbstractModels as it provides

an interface for all the files that are used as an input for the calculation. For example, this

class wraps functions like T (t) (i.e. InputInterface.temperature from above), which are

relevant for eqs. like (2.8) and therefore need to be provided as an input. In section 6.2 we

will discuss this class in more detail and also go over the different inputs that are required

for a successful calculation.

6.1.3 The model constructor

When calling the constructor of a new model, it crucial to also invoke the constructor of the

abstract base class AbstractModel. The latter one takes two arguments, the first one being

the injection energy E0 for the monochromatic part of the source term (cf. eq. (2.5)) and

the second one being an instance of the previously mentioned class InputInterface. When

considering DecayModel as an example, which features an injection energy E0 = mφ/2, this

leads to a constructor of the following form

de f i n i t ( s e l f , mphi , tau , temp0 , n0a , bree , braa ) :

# I n i t i a l i z e the I n p u t I n t e r f a c e

s e l f . s I I = I n p u t I n t e r f a c e ( l o c a t e s m f i l e ( ) )

[ . . . ]

# The i n j e c t i o n energy

s e l f . sE0 = mphi /2 .

[ . . . ]

# Cal l the super con s t ruc to r

super ( DecayModel , s e l f ) . i n i t ( s e l f . sE0 , s e l f . s I I )

Here, an instance of InputInterface is constructed from the data that is stored in the file

acropolis/data/sm.tar.gz. To fully understand the code, we therefore have to discuss

the importance of this class, which we do in the next section.

6.2 The input framework acropolis.input

The calculation of the abundances after photodisintegration cannot proceed without certain

(model-dependent) inputs, including the baryon-to-photon ratio, the initial abundances

after BBN, and the dynamics of the background plasma as encoded in functions such as
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T (t), Tν(T ), and H(T ). All of these inputs are collectively wrapped by and accessible via

the previously mentioned class acropolis.input.InputInterface. The constructor of

this class only takes a single argument, which is expected to be the name of a .tar.gz file

containing the following three files

input . ta r . gz

|
| p a r a m f i l e . dat

| c o s m o f i l e . dat

| abundance f i l e . dat

One such file that ships with ACROPOLIS is acropolis/data/sm.tar.gz, which assumes a

standard cosmological history without an appreciable impact of BSM physics apart from

photodisintegration. As mentioned above this is a very good approximation for parameter

regions which are close to the resulting limit, as photodisintegration strongly constrains

even very small abundances, implying that changes to the SM values are small. Corre-

spondingly, this file is used for both example models, as in these cases the abundance of

the participating dark-sector particles gives a negligible contribution. However, this might

not always be the case, potentially necessitating the construction of model-specific input

files. We go over these different *.dat files and their content below and discuss how to

access them from an instance of InputInterface. This is crucial since this class might

encode vital information that is needed to implement the different source terms and the

temperature range.

6.2.1 The file param file.dat

This file contains all input parameters that cannot be provided in the model constructor,

e.g. if they are closely tied to the evolution of the background plasma. Here, the minimal

requirement is to provide a value for the baryon-to-photon ratio,10 but more parameters

can be incorporated via additional lines of the form key=value. For example, the file

acropolis/data/sm.tar.gz:param file.dat only contains one line,

eta =6.137e−10

However, independent of the number of lines in this file, after constructing an instance of

InputInterface, all included parameters can be accessed by simply calling the method

InputInterface.parameter(key) with the corresponding key. For example in the case

of sm.tar.gz, calling parameter("eta") would return 6.137e-10.

6.2.2 The file cosmo file.dat

This file encodes the cosmological evolution of the background plasma. It must contain at

least five columns (separated by spaces) including discrete grids for the following quantities:

• time t [in s]

• temperature T [in MeV]

10This parameter also enters the initial abundances and therefore is closely tied to other inputs.
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• time-temperature relation dT/dt [in MeV2]

• neutrino temperature Tν [in MeV]

• Hubble rate H [in MeV]

The grids need to be equidistantly spaced on a log-scale of time t. Given an instance of

InputInterface, the interpolated data of these mandatory entries is accessible via the

predefined methods

T (t) InputInterface.temperature(t)

t(T ) InputInterface.time(T)

dT
dt (T ) InputInterface.dTdt(T)

Tν(T ) InputInterface.neutrino temperature(T)

H(T ) InputInterface.hubble rate(T)

R(T ) InputInterface.scale factor(T)

Besides these mandatory columns, it is also possible to add an arbitrary number of addi-

tional ones, e.g. containing quantities that are needed to implement the source terms or

the temperature range. The interpolated data of the columns can then be accessed by

calling the more generic method InputInterface.cosmo column(yc, val, xc=1). This

function can be used to generically calculate y(x) at x =val via interpolation of any two

columns in cosmo file.dat, where y is determined from the entries in column yc and x is

determined from the entries in column xc. This function therefore does not only allow

to evaluate user-defined columns but also different correlations between the mandatory

quantities, like e.g. t(H). Possible examples include

yc xc y(x)

1 0 T (t)

4 3 H(Tν)

0 4 t(H)

5 1 C5(T )

In the last example, column yc=5 is assumed to exist (i.e. that it was added by the user),

in which case C5 denotes the cosmological quantity that is tabulated in this column.

6.2.3 The file abundance file.dat

This file contains the initial abundances (before photodisintegration, but after nucleosyn-

thesis) that are used for the calculation. This file must contain at least one column with

the abundances for n, p, 2H, 3H, 3He, 4He, 6Li, 7Li, and 7Be. Additional columns are also

allowed and – as previously mentioned – the code calculates the resulting abundances after

photodisintegration for each set of initial values (i.e. for each column). After constructing

an instance of InputInterface, the different initial abundances can be collectively ac-

cessed by calling the method InputInterface.bbn abundances(), which returns a 9× n
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array with n being the number of columns. Alternatively, the first column can also be

separately obtained by calling InputInterface.bbn abundance 0() instead.

6.3 The parameters in acropolis.params

All of the constants that are used within ACROPOLIS can be found in acropolis.params.

This files not only contains mathematical (zeta3,...) and physical (alpha, me, hbar,...)

constants, but also some algorithm-specific parameters such as the number of points per

decade used to construct the energy (NE pd) and temperature (NT pd) grids. All of these pa-

rameters are well documented in the file itself. There are three parameters at the beginning

of this file that can be set to True or False:

• usedb (default: True) – if this parameter is set to True, the optional database files

are used to speed up the calculation at the cost of additional I/O operations. If this

parameter is set to False instead, all reaction rates are calculated from scratch. This

might be especially useful when running on a batch system. Some benchmarks that

have been calculated with and without the use of the database files can be found in

appendix B.

• verbose (default: True) – if this parameter is set to True, the code prints all message

types to the screen, including INFO, WARNING, and ERROR. If this parameter is set to

False instead, INFO messages are not printed.

• debug (default: False) – if this parameter is set to True, additional debug info is

printed, including additional information on the position at which certain warnings

or errors appear.

For all other parameters, it is not advised to perform any manual changes, since these

were selected in a way to ensure a great compromise between runtime and accuracy around

the exclusion region.11 We demonstrate this in figure 3, where we show the final abundance

of deuterium for different values of NE pd and NT pd. We find that the abundances indeed

converge for NE pd,NT pd→∞, while the default values for NE pd and NT pd (indicated by

the dashed lines) lead to a result that deviates only at the O(0.1%) level – much smaller

than the difference that is caused by the reaction rate uncertainties (different colours).

7 Conclusions

In this work, we present ACROPOLIS, A generiC fRamework fOr Photodisintegration Of LIght

elementS, the first public code for calculating the effects of photodisintegration of light

elements in the early universe. ACROPOLIS performs this by first computing the non-thermal

part of the photon spectrum arising due to late-time high-energetic injections into the SM

plasma and then calculating its effect on the primordial light element abundances. We

provide and discuss two example programs covering a plethora of interesting applications

11Far away from the exclusion line, the results might not be perfectly accurate. If, for some reason, you

also require precise results in this region, try increasing the values of NE pd and NT pd.
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Figure 3. Convergence of the abundance of deuterium as a function of the grid points NE pd and

NT pd. The dashed line indicates the default value in ACROPOLIS.

via (i) the decay of a decoupled MeV-scale BSM particle and (ii) residual annihilations

of DM. Furthermore, we detail how additional models can easily be implemented in the

modular structure of ACROPOLIS.
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A Rates for the cascade processes

In this appendix, we collect for completeness all relevant total and differential interac-

tion rates Γx(E) and Kx′→x(E,E′) for the cascade processes of high-energetic photons,

electrons, and positrons on the background photons, electrons, and nuclei (see eqs. (2.4)

and (2.7)). Large parts are directly taken from [24].

Target densities

The thermal photon spectrum differential in energy fγ(ε̄) is given by

fγ(ε̄) =
ε̄2

π2
× 1

exp(ε̄/T )− 1
, (A.1)

while the total baryon number density can be calculated from the baryon-to-photon ratio

η and the number density of photons nγ(T ),

nb(T ) = η × nγ(T ) = η × 2ζ(3)

π2
T 3 . (A.2)
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Via charge neutrality we obtain for the number density of background electrons

ne(T ) =
∑
N

ZNnN '
[
Yp(T ) + 2Y4He(T )

]
× nb(T ), YN (T ) =

nN (T )

nb(T )
. (A.3)

At the times relevant to photodisintegration (t & 104 s), BBN has already terminated and

the nuclear abundances YN (T ) are approximately constant. Hence, in the following, we

neglect the temperature dependence of YN (T ), and fix them to their values directly after

BBN. Note that a change due to photodisintegration is only relevant when the correspond-

ing scenario is excluded anyhow.

Final-state radiation: DS → e+e−γ

Following [25], the source term for final-state radiation can directly be calculated from the

source term of electrons or positrons via the expression [35, 36]

S(FSR)
γ (E) =

S
(0)
e±

E0
× α

π

1 + (1− x)2

x
ln

(
4E2

0(1− x)

m2
e

)
×Θ

(
1− m2

e

4E2
0

− x
)

(A.4)

with x = E/E0.

Double photon pair creation: γγth → e+e−

The rate for double photon pair creation is given by [31]12

Γ(DP)
γ (E) =

1

8E2
×
∫ ∞
m2

e/E
dε̄

fγ(ε̄)

ε̄2
×
∫ 4Eε̄

4m2
e

ds s · σDP

(
β =

√
1− 4m2

e/s
)

(A.5)

with the total cross-section

σDP(β) =
πα2

2m2
e

× (1− β2)

[
(3− β4) ln

(
1 + β

1− β

)
− 2β

(
2− β2

)]
. (A.6)

This process is only relevant above the threshold of production of electron-positron pairs

E & m2
e/(22T ), allowing us to set Γ

(DP)
γ (E) = 0 for E < m2

e/(22T ).

The differential rate for double photon pair creation entering the calculation of the

electron and positron spectrum13 was originally calculated in [42] and is given by14

K
(DP)
γ→e±(E,E′) =

πα2m2
e

4
× 1

E′3

∫ ∞
m2

e/E
′
dε̄

fγ(ε̄)

ε̄2
G(E,E′, ε̄) , (A.7)

12Correcting a typo in eq. (27) of [31].
13Here, the notation γ → e± in the index of Kx′→x indicates that the corresponding expression is valid

for x′ → x ∈ {γ → e+, γ → e−} and consequently enters eq. (2.7) twice.
14Correcting a typo in eq. (28) of [31].

– 25 –



with

G(E,E′, ε̄) =
4(E′ + ε̄)2

E(E′ + ε̄− E)
ln

(
4ε̄E(E′ + ε̄− E)

m2
e(E

′ + ε̄)

)

+

(
m2
e

ε̄(E′ + ε̄)
− 1

)
(E′ + ε̄)4

E2(E′ + ε̄− E)2

+
2
[
2ε̄(E′ + ε̄)−m2

e

]
(E′ + ε̄)2

m2
eE(E′ + ε̄− E)

− 8
ε̄(E′ + ε̄)

m2
e

(A.8)

for me < E−lim < E < E+
lim,

2E±lim = E′ + ε̄± (E′ − ε̄)
√

1− m2
e

E′ε̄
, (A.9)

and G(E,E′, ε̄) = 0 otherwise. As explained above, we further set K
(DP)
γ→e±(E,E′) = 0 for

E′ < m2
e/(22T ).

Photon-photon scattering: γγth → γγ

The total and differential interaction rates for photon-photon scattering have been origi-

nally calculated in [43], and are given by15

Γ(PP)
γ (E) =

1946

50625π
× 8π4

63
× α4me ×

(
E

me

)3( T

me

)6

, (A.10)

and

K(PP)
γ→γ (E,E′) =

1112

10125π
× α4

m8
e

× 8π4T 6

63
× E′2

[
1− E

E′
+

(
E

E′

)2
]2

. (A.11)

In principle, these expressions are only valid for E . m2
e/T [31]. However, for energies

larger than this, photon-photon scattering is in any case negligible compared to double

photon pair creation, making it unnecessary to impose this additional constraint.

Bethe-Heitler pair creation: γN → Ne+e−

The total rate for Bethe-Heitler pair creation at energies E ≥ 4me and up to order m2
e/E

2

can be written as [31, 44]16

Γ(BH)
γ (E) ' α3

m2
e

×
(∑

N

Z2
NnN (T )

)
×
([

28

9
ln(2k)− 218

27

]

+

(
2

k

)2 [2

3
ln(2k)3 − ln(2k)2 +

(
6− π2

3

)
ln(2k) + 2ζ(3) +

π2

6
− 7

2

])∣∣∣∣∣
k=E/me

.(A.12)

15Correcting a typo in eq. (31) of [31] and in eq. (5) of [29].
16We checked that higher order terms do not change the final results.
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Here, we only take into account scattering off 1H and 4He, which implies∑
N

Z2
NnN (T ) '

∑
N ∈{p,4He}

Z2
NnN (T ) =

[
Yp(T ) + 4Y4He(T )

]
× nb(T ) , (A.13)

since the abundances of all other nuclei are strongly suppressed. Furthermore, for energies

in the range 2me < E ≤ 4 MeV, the interaction rate is essentially constant [32], Γ
(BH)
γ (E) '

Γ
(BH)
γ (E = 4 MeV).

The differential rate for Bethe-Heitler pair creation is given by [31, 45]

K
(BH)
γ→e±(E,E′) =

(∑
N

Z2
NnN (T )

)
× dσBH(E,E′)

dE
×Θ(E′ − E −me) , (A.14)

with the differential cross-section

dσBH(E,E′)

dE
=
α3

m2
e

×
(p+p−
E′3

)
×
[
− 4

3
− 2E+E−

p2
+ + p2

−
p2

+p
2
−

+m2
e

(
l−
E+

p3
−

+ l+
E−
p3

+

− l+l−
p+p−

)

+ L

(
−8E+E−

3p+p−
+

E′2

p3
+p

3
−

(
E2

+E
2
− + p2

+p
2
− −m2

eE+E−
))

− L m2
eE
′

2p+p−

(
l+
E+E− − p2

+

p3
+

+ l−
E−E+ − p2

−
p3
−

)]
, (A.15)

where we have defined

E− := E , E+ := E′ − E , p± :=
√
E2
± −m2

e (A.16)

L := ln

(
E+E− + p+p− +m2

e

E+E− − p+p− +m2
e

)
, l± := ln

(
E± + p±
E± − p±

)
. (A.17)

The Θ-function appearing in eq. (A.14) ensures that we fulfill energy conservation in the

integration of E′ over the range [E,∞] in eq. (2.7).

Compton scattering: γe−th → γe−

The total rate for Compton scattering can be found in [29, 31] and is given by

Γ(CS)
γ (E) =

2πα2

m2
e

× ne(T )× 1

x

[(
1− 4

x
− 8

x2

)
ln(1 + x) +

1

2
+

8

x
− 1

2(1 + x)2

] ∣∣∣∣∣
x=2E/me

.

(A.18)
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Furthermore, the differential rate for the energy of the scattered photon reads [29, 31]17

K(CS)
γ→γ(E,E′) = Θ(E − E′/(1 + 2E′/me))×

πα2

me
× ne(T )×

1

E′2

[
E′

E
+
E

E′
+
(me

E
− me

E′

)2
− 2me

(
1

E
− 1

E′

)]
(A.19)

with the Θ-function corresponding to a vanishing rate above the Compton edge.

Following [31], the differential rate relevant for the spectrum of electrons can be de-

duced from eq. (A.19),

K
(CS)
γ→e−(E,E′) = K(CS)

γ→γ(E′ +me − E,E′) . (A.20)

Inverse Compton scattering: e±γth → e±γ

The differential rate for production of photons from inverse Compton scattering was orig-

inally calculated in [46] and can be written as

K
(IC)
e±→γ(E,E′) = 2πα2 × 1

E′2

∫ ∞
0

dε̄
fγ(ε̄)

ε̄
F (E,E′, ε̄)×Θ(E′ − E −me) . (A.21)

For ε̄ ≤ E ≤ 4ε̄E′2/(m2
e + 4ε̄E′), the function F (E,E′, ε̄) is given by18

F (E,E′, ε̄) = 2q ln(q) + (1 + 2q)(1− q) +
Γ2
εq

2

2 + 2Γεq
(1− q) , (A.22)

with

Γε =
4ε̄E′

m2
e

, q =
E

Γε(E′ − E)
, (A.23)

and F (E,E′, ε̄) = 0 otherwise.19 Again, the Θ-function in eq. (A.21) ensures energy

conservation upon integration of E′ over the range [E,∞].

The total rate for inverse Compton scattering entering the calculation of the electron

and positron spectrum is given by [31, 46]20

Γ
(IC)
e± (E) = 2πα2 × 1

E2

∫ ∞
0

dEγ

∫ ∞
0

dε̄
fγ(ε̄)

ε̄
F (Eγ , E, ε̄) . (A.24)

Finally, the differential rate for the production of electrons and positrons can be written

as [31, 46]

K
(IC)
e±→e±(E,E′) = 2πα2 × 1

E′2

∫ ∞
0

dε̄
fγ(ε̄)

ε̄
F (E′ + ε̄− E,E′, ε̄) . (A.25)

17Correcting a typo in eq. (10) of [29].
18Correcting a typo in eq. (49) of [31].
19According to [46], the function F (E,E′, ε̄) takes a different form for E < ε̄. However, this part of

parameter space is practically irrelevant for our considerations.
20Correcting a typo in eq. (48) of [31].
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Additional processes not considered in our calculation

Other processes such as

• Coulomb scattering e±e−th → e±e− and Ne−th → Ne−,

• Thompson scattering Nγth → Nγ,

• Magnetic moment scattering Ne−th → Ne− or

• Electron-positron annihilation e+e−th → γγ

are suppressed by the small density of background electrons or nuclei ne, nN � nγ and can

therefore be neglected.

B Some benchmarks

In this appendix we present benchmarks in order to better understand the actual runtime

of the code. We ran the script decay with different values of mφ and τφ while fixing

nφ/nγ |T0 = 10−10 at T0 = 10 MeV, BRee = 0 and BRγγ = 1 (changing the latter parameters

does not change the runtime). Using one core of an Intel Core i5-6500 CPU @ 3.20GHz,

we obtain the following results

./decay mφ [MeV] τφ [s] 10 1e-10 0 1

mφ [MeV] τφ [s] runtime (with db) runtime (without db)

10 105 0min 28s 1min 13s

50 105 2min 51s 5min 12s

100 105 4min 29s 7min 56s

10 107 0min 19s 0min 33s

50 107 2min 12s 3min 11s

100 107 3min 33s 5min 03s

Given these results, it is worth noting that the runtime critically depends on the values of

mφ and τφ, since these parameters determine the energy and temperature range that is used

for the calculation. For the decay model the relevant intervals are given by [Emin,mφ/2]

and [101/2T (τφ), 10−3/2T (τφ)], respectively. Since the number of points per decade are fixed

per default, larger values of mφ lead to a larger energy grid and thus to a longer runtime.

Benchmarking the annihilation model, we ran the script annihilation for different

values of mχ while fixing a = 10−25 cm3/s, b = 0, Tkd = 0, BRee = 0 and BRγγ = 1

(changing the latter parameters again does not change the runtime). In this case, by using

the same CPU, we find

./annihilation mχ [MeV] 1e-25 0 0 0 1

mφ [MeV] runtime (with db) runtime (without db)

10 01min 46s 03min 45s

50 06min 58s 11min 50s

100 10min 51s 17min 04s
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Again we find that the runtime is increased for larger values of mχ, which determines the

energy range [Emin,mχ].

We thus conclude that, depending on the model and choice of parameters, the run-

time (with database files) can easily vary between O(10 s) and O(1 min). In order to still

enable efficient (and fast) parameter scans, ACROPOLIS comes with a dedicated scanning

framework, cf. section 5.2.3.
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